Alveolar instability caused by mechanical ventilation initially damages the nondependent normal lung

نویسندگان

  • Lucio Pavone
  • Scott Albert
  • Joseph DiRocco
  • Louis Gatto
  • Gary Nieman
چکیده

BACKGROUND Septic shock is often associated with acute respiratory distress syndrome, a serious clinical problem exacerbated by improper mechanical ventilation. Ventilator-induced lung injury (VILI) can exacerbate the lung injury caused by acute respiratory distress syndrome, significantly increasing the morbidity and mortality. In this study, we asked the following questions: what is the effect of the lung position (dependent lung versus nondependent lung) on the rate at which VILI occurs in the normal lung? Will positive end-expiratory pressure (PEEP) slow the progression of lung injury in either the dependent lung or the nondependent lung? MATERIALS AND METHODS Sprague-Dawley rats (n = 19) were placed on mechanical ventilation, and the subpleural alveolar mechanics were measured with an in vivo microscope. Animals were placed in the lateral decubitus position, left lung up to measure nondependent alveolar mechanics and left lung down to film dependent alveolar mechanics. Animals were ventilated with a high peak inspiratory pressure of 45 cmH2O and either a low PEEP of 3 cmH2O or a high PEEP of 10 cmH2O for 90 minutes. Animals were separated into four groups based on the lung position and the amount of PEEP: Group I, dependent + low PEEP (n = 5); Group II, nondependent + low PEEP (n = 4); Group III, dependent + high PEEP (n = 5); and Group IV, nondependent + high PEEP (n = 5). Hemodynamic and lung function parameters were recorded concomitant with the filming of alveolar mechanics. Histological assessment was performed at necropsy to determine the presence of lung edema. RESULTS VILI occurred earliest (60 min) in Group II. Alveolar instability eventually developed in Groups I and II at 75 minutes. Alveoli in both the high PEEP groups were stable for the entire experiment. There were no significant differences in arterial PO2 or in the degree of edema measured histologically among experimental groups. CONCLUSION This open-chest animal model demonstrates that the position of the normal lung (dependent or nondependent) plays a role on the rate of VILI.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics

INTRODUCTION Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, th...

متن کامل

High frequency oscillatory ventilation versus conventional ventilation in a newborn piglet model with acute lung injury.

BACKGROUND High frequency oscillatory ventilation (HFOV) is considered a protective strategy for human lungs. This study was designed to define microscopic structural features of lung injury following HFOV with a high lung volume strategy in newborn piglets with acute lung injury. METHODS After acute lung injury with saline lavage, newborn piglets were randomly assigned to 5 study groups (6 i...

متن کامل

Spontaneous effort causes occult pendelluft during mechanical ventilation.

RATIONALE In normal lungs, local changes in pleural pressure (P(pl)) are generalized over the whole pleural surface. However, in a patient with injured lungs, we observed (using electrical impedance tomography) a pendelluft phenomenon (movement of air within the lung from nondependent to dependent regions without change in tidal volume) that was caused by spontaneous breathing during mechanical...

متن کامل

New strategies in mechanical ventilation for acute lung injury.

In the fluid-filled lungs of early adult respiratory distress syndrome (ARDS) the dependent parts are compressed and atelectatic; whereas, the nondependent areas remain aerated and functional. Ventilating these considerably restricted lungs carries the risk of overinflation and ventilatory-induced lung injury (baro-volutrauma). The consequences for adjusting mechanical ventilation are: 1) reduc...

متن کامل

Wood smoke inhalation causes alveolar instability in a dose-dependent fashion.

BACKGROUND Wood smoke inhalation causes severe ventilation and oxygenation abnormalities. We hypothesized that smoke inhalation would cause lung injury by 2 mechanisms: (1) direct tissue injury by the toxic chemicals in the smoke and (2) a mechanical shear-stress injury caused by alveolar instability (ie, alveolar recruitment/derecruitment). We further postulated that alveolar instability would...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Critical Care

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2007